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CONSTRUCTION 11.32

Let GenModulus be a polynomial-time algorithm that, on input 17, out-
puts (N,p,q) where N = pg and p and g are n-bit primes (except with
probability negligible in n). Define a public-key encryption scheme as
follows:
e Gen: on input. 1" run GenModulus(1™) to obtain (N,p,q). The
public key is' N, and the private key is (N, ¢;(.\-’)):<N} ¢ 2
e Enc: on input a public key N and a message m € Zy, choose a
random 7 < Z)y and output the ciphertext

c=[(1+N)™-r¥ mod N?.

e Dec: on input a private key (N,o(/N)) and a ciphertext ¢, compute

IV'

S [[c¢(.~} mod N?| -1 - $(N)~" mod N} '

The Paillier encryption scheme.
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ans=1

dd_ >> el=mod_exp((1+N),m,N_2)

[[Emod@z\] —L G e ® el = 159453962
@) | '

>> e2=mod_exp(r,N,N_2)

m =

| U e2 = 73833387
d, mod N dy pmed N >> c=mod(e1*e2,N_2)
m = oy ds med N ¢ =120531541
= d

>>d1=mod_exp(c,fy,N_2)
d1=197426708

>> d2=mod((d1-1)/N,N)
d2 =13757

>> d3=mulinv(fy,N)
d3=5224

>> mm=mod(d2*d3,N)
mm=11111

PROPOSITION 11.27 Let -—— pq, where p,q are distinct odd primes of
the same length. Then:

1. ged(N,p(N)) = 1.

2. For any integer a > 0, we have (1 + N)* = (1 + aN) mod NZ.

As a consequence, the order of (1+N) in Z;,g is N. That is, (i+N}‘\’ =
=1mod N? and (1 + N)* # 1 mod N? for any 1 <a < N.

3. Zn x L}y 15 isomorphic to LY., with isomorphism f: Zn x Zyy — L
given by a b Y
£(a,8) = [(1 + N)* - 5™ mod N?.

#Recall that(Zn) is a group under addition modulo N, whi!e(Z’;) is a group under multipli-
cation modulo N.

¥

wool N

To show that f is an isomorphism, we show that f(a,b1) - f(az2,b2)" =
flay; + a2,by - b2). (Note that multiplication on the left-hand side of the
equality takes place modulo N2, while addition/multiplication. on the right-
hand side takes place modulo N.)- We have:
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flai,by) - flaz,b2) = ((1 +Nj‘51..b;") -((1+N)22 . b)) mod N?-
= (1+ N)**22 . (h;by)N mod N2

Since (1+ N) has order N modulo N? (by Claim 11.29), we can apply Propo-
sition 7.49 and obtain

flar,by) - flaz,b2) = (1 4+ N)®**92 . (b1b2)" mod N?
= (1 4+ N)artazmed N3, 5))Y mod N2, (11.8)

We are not yet done, since b;b2 in Equation (11.8) represents multiplication

modulo N? whereas we would like it to be modulo N. Let bibs = r + 4N,

where v, r are integers with 1 < < N (r cannot be 0 since by, by € Z, and
so their product cannot be divisible by N). Note that r = bb mod N. We
also have

(bib2)™N = (r +¥N)™ mod N?

= Z( ) N=k(yN)* mod N?
N4y N-rN=1.(yN) =" = (b)b2 mod N)" mod N?,

using the binomial expansion theorem as in Claim 11.29. Plugging this in to
Equation (11.8) we get the desired result:

f(a1,b1) - f(a2,b2) = (1 + N)ertezmod N | (byb2 mod N)» mod N?
— f(a1 -+ az, 1)1])-2).

proving that f is an isomorphism from Zyx x Z}; to Z}.. H

Encr /:/ZLLOVM m - Méés'aﬁé 7o be Ml‘y/)faa’ = ;7’
w«—rmdé(céz”‘) ged (FN)=4 — ¢ Zy
Enc@ymyt) = f(mr)=ceI)..

f(mr) = (4+@)”’- w@mm/@?:c = bk, =a=N.
( ¢
;

Ders (PH(A—:¢S c) = < Prl/(A = QbC/\/):d):}é% :(Pf_o- (@—fj)

Decryption. We now describe how decryption can be performed efficiently
given the factorization of N. For ¢ constructed as above, we claim that m is
recovered by the following steps: ' ) DA/ ) ¢

e S . [
--e-Set C: [C mod 1“\('2]. .. . i ’

e Set m:= (¢ —1)/N. (Note that this is carried out over the integers.) 5/4/ =1,25
..« iy . NUREPRRL. | . . 4—1 1
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e Set rh:= (¢ —1)/N. (Note that this is carried out over the integers.) 5/4 =1,25
e Set m := [rh . (zﬁ(x’V)_l mod xV]. @, qj-i: 1 VVlDd N

To see why this works, let ¢ <+ (m,r) for an arbitrary r € Z};. Then

§= [(,‘ mod N?|

o (m, r)®)
([m - @(N) mod N|, )
’ O ~~Euler To: W ged (v, 0) =1, Thes

= ([m-#(N) mod N,
M wod N =1

Fetwat T.:1 p is prime =2 v : WP =4 medy
#p) = p-t

By Proposition 11.27(3), this means that é = (1 4+ N)[m¢(N) mod N] y 64 N2,
Using Proposition 11.27(2), we know that

(1+[m

- #(N) mod N] (N), modNZ.

c=(1+ N)[m%b(N) mod N] _

C=we¢ modN = m=C. ¢ pod i
To Yindd 3™ vod N

414

mod N]- N is always less that N? we can drop the mod N2

Since 1+ [m- (Y
. def

a1id view the above as an equality over the integers. Thus, n =
[m - #(N) mod N] and, finally,

= [m - ¢(N)~! mod NJ,
as required. (Note that ¢(N) is invertible modulo N since ged(N,¢(N)) = 1.)

We give a complete description of the Paillier encryption scheme, followed
by an example of the above calculations.
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CONSTRUCTION 11.32

Let GenModulus be a polynomial-time algorithm that, on input 17, out-
puts (N,p,q) where N = pq and p and g are n-bit primes (except. with n
probability negligible in n). Define a public-key encryption scheme as i =Aofe L 1

follows:
e Gen: on inpuf 1" run GenModulus(1™) to obtain (V(p.g). The N - 1 M}’% VIMIMb&r'
public key is and the private key is )f C ¢: VZJ-, 5% )
B; e Enc: on input a public key NV and a message m € Zy, choose a '0% ‘b[l;

random 7 < Z)y and output the ciphertext
Pull, N m< N |\M =204 8.
e= [(14+ M) r" mod N2
\/__’_Jj
\7% ¢ e Dec: on input a private key (; and a ciphertext ¢, compute

PriK o [[m&;l)@g] -1 G mod@ .

The Paillier encryption scheme.
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