	006_KS ElGamal-Sig							
	Topics of Course Works w	ou will find in						
	http://crypto.fmf.ktu.lt/xdo	ownload/						
	 A-graquaic-course-m-Ai 							
	Course_Works P170M10	00-2020.docx						
	 Course Works P175M11 	13-2020 docx						
	You must choose suitable	topic of Course Work by labe	eling it in G	oogle drive				
	https://drive.google.com/f	ile/d/1qjFw1OJnPcwa3CFvg	<u>-Of1xt_B91</u>	RXXAqq/view?usp=sharing				
	→ Open v → "Google"	documents						
	Midterm exam should h	e from 8 to 16 week: sugg	oct <mark>11-th y</mark>	week 12-th of November				
	It will be arranged durin	a the lecture 17.20 19.00	est <u>11-til v</u>	week, 12-th of November.				
	it will be all aliged duffi	ig the lecture 17.50-18.00.						
	https://imimsociety.net	/en/14-cryptography						
	Problems required to so	lve:						
	DH-KAP MiM Attack R	SA signature RSA encrypti	on					
	https://imimsociety.net	-	011					
	http://crupto.fmf.ktu.lt	<u>-</u> /xdowpload/						
		<u>/xuowiiioau/</u>						
	El-Gamal Encryption: example with Octave							
	Public parameter	(p,g)						
	p = 264043379 Check that p is strong prime							
<i>g</i> =2								
			P =	29+1				
	>> genstrongprime(28)	>> x=randi(p-1)	P19-	- primes => p - strong prime				
	ans = 15412127	x = 3121242	A. II					
	>> p=ans	>> a=mod_exp(g,x,p)	D TL; KE	y pair : X = Prk				
\langle	p = 15412127	a = 13704847	$\alpha = \alpha$	2×mod P = Puk				
	>> q=(p-1)/2		<					
	q = 7700003	C = (E, D)		>> m=123456				
	2 = 1			m = 123456				
		$m = 123456 \angle p$		>> r=randi(p-1)				
	>> g=3	W == == = d = m / h	1	r = 3/16363				
	g = 3	1 ana; r 2 p	-1	>> e1=mod_exp(a,r,p)				
	>> mod_exp(g.2.p)	$E = m \cdot n \mod p$		e1 = 602/330				
	ans = 9			>> e=mod(m*e1,p)				
		$D = Q' \mod p$	ΕΞ	e = 12500920				
	>> mod_exp(g.a.p)	v '	~	>> a=moa_exp(g,r,p)				
	ans = 1		DE	u = /2418/2				

>> g=17 g = 17>> mod exp(g,q,p) ans = 15412126 $B: = (E,D) = (12560920, 7241872) + f: m = E \cdot D \mod p$ Format T_{\bullet} : $D^{P-1} = 1 \mod p / D^{-x}$ $D^{P-1} \cdot \overline{D}^{\times} = \overline{D}^{\times} \mod p \implies \overline{D}^{\times} = \overline{D}^{P-1-x} \mod p$ >> demx=mod_exp(d,p-1-x,p) demx = 4633989 >> m1=mod(e*demx,p) m = m1 = 123456**El-Gamal E-Signature** Digital signature standard - DSS - NSA DSA Elliptic Curve Cryptosystem - ECC -> ECDSA RSA signature scheme: Puk=(e,n); Prk=(d). m<n Sig $(M, Prk) = M \mod n = s$ $A \xrightarrow{m, s} B$ Ver $(s, Puk) = s^{e} \mod n = m \stackrel{de=imod b(u)}{\mod n = m'}$ 16 m'= m => e-signature is valid. Signature with message recovery, Deterministic signature algorithm (non-randomised) The **ElGamal signature scheme** is a <u>digital signature</u> scheme which is based on the difficulty of computing <u>discrete logarithms</u>. It was described by <u>Taher ElGamal</u> in 1984.^[1] The ElGamal signature algorithm is rarely used in practice. A variant developed at NSA and known as the Digital Signature Algorithm is much more widely used. There are several other

variants.^[2] The ElGamal signature scheme must not be confused with <u>ElGamal</u>

encryption which was also invented by Taher ElGamal.

The ElGamal signature scheme allows a third-party to confirm the authenticity of a message sent over an insecure channel.

From <<u>https://en.wikipedia.org/wiki/ElGamal_signature_scheme</u>>

Discr. exp. funct DEF: having PP=(p, q) and × find a = gx madp Discr. log. funct, DLF: having PP=(P,q) and a find X. dlogg a = dlog g mad p = × dlogg g mad p = X total breaked Discrete Logar. Ass, - DSA => computation of dlog Q is infeasible! M-message to be signed: |M ~ 1GB = 8.230 bits $|p| \sim 2048 = 2^{M}$ bits M>>1p = signing M is not effective since it is required to split M into the pieces [Mi] < [P]. How to sign large messages? H-function; message digest \sim santraulus f-ja H: $\{0,1\}^* \longrightarrow \{0,1\}^{256}$ SHA3, SHA 256 M-message to le signed ; Public available H-function H(M) = h; |h| = 256 Bits)p/~2048 bits 1.System parameters (PP) • Let *H* be a collision-resistant hash function. $|h| \leq |P|$ • Let *p* be a large <u>prime</u> such that computing <u>discrete logarithms</u> <u>modulo</u> *p* is difficult.

• Let g < p be a randomly chosen generator of the <u>multiplicative group of integers</u> <u>modulo p</u> $Z_p^* = \{1, 2, ..., p-1\} = \{g^i \mid i=0, 1, 2, ..., p-2\}$. //Fermat theorem These <u>System Parameters</u> (SP) must be shared between users. SP = (p, g) $p \sim 2^{2048} \approx 10^{400}$; h < p. M >> [P]H(M) = h; h < p.

2.Key generation

• Randomly choose a private key \mathbf{X} with $\mathbf{1} < \mathbf{X} < \mathbf{p} - \mathbf{1}$.

- Compute $a = g^{\times} \mod p$.
- The public key is PuK = a.
- The private key is $\mathbf{PrK} = \mathbf{X}$.

These steps are performed once by the signer.

Digital signature

• Choose a <u>random k</u> such that 1 < k < p - 1 and gcd(k, p - 1) = 1. $k^{-1} \mod (p-1)$ exists if gcd(k, p - 1) = 1, i.e. k and p-1 are relatively prime k^{-1} can be found using either Extended Euclidean algorithmt or Euler theorem

>> kem1=mulinv(k,p-1) % k⁻¹mod (p-1) computation

Compute t=g^k mod p

Compute $s=(h-x^*t)^*k^{-1} \mod (p-1) \longrightarrow h=x^*t+s^*k \mod (p-1)$, Signature Sigma=(s,t) = 6'

$$h = \chi t + ks mad(p-1)$$

• If **s=0**, start over again.

Then the pair (*s*,*t*) is the digital signature of *h*.

The signer repeats these steps for every signature.

 $\mathcal{M}, \mathcal{G} = (s, t)$ $\mathcal{R}: computes H(M) = h$

4. Verification

A signature (**s,t**) on message **h** is verified as follows.

1. 1<s<p-1 and 1<t<p-1.

2. V1=a^tt^s mod p, V2=g^h mod p and V1=V2.

The verifier accepts a signature if all conditions are satisfied and rejects it otherwise.

5. Correctness

The algorithm is correct in the sense that a signature generated with the signing algorithm will always be accepted by the verifier.

The signature generation implies

h=<mark>x</mark>t+sk mod (p-1)

Hence <u>Fermat's little theorem</u> implies that all operations in the exponent are computed mod (p-1)

V2 $g^{h} = g^{(xt+ks) \mod (p-1)} \mod p = g^{xt}g^{ks} = (g^{x})^{t}(g^{k})^{s} = a^{t}t^{s} \mod p^{s}$

Comments: VI = V2 means that signature is formed with the PrK=X to which corresponds PuK=a and nothing more. But! To impersonates A: Bob I'm sending you my public key a and please check my singned messages with this key.

>> M = 'Hello Bob, I need to meet you' >7 m26 = $H_{26}(M)$ >> m28 = H28(M) % |m28| = 28 bits = 7 Bytes

- up to that

ElGamal Signature ECDSA $Z_p^{\star} = \langle 1, 2, 3, \dots, p-1 \rangle$ EC group + -> ECG

G - generator $g \in Z_p = \{g^i \mid i = 0, 1, 2, ..., p - 2\}$ $ECG = \{ i G \mid i = 1, 2, ..., | ECG | \}$ *mod p $a = g \mod p$ \implies A = X G× - random secret number $\times < |ECG| \sim 2^{256}$ A, G - Elliptic Curve points Juicia 2019.10.21 ECDSA po prakt. pvz. 11.65 Example: ElGamal signature generation with artificially small parameters Key generation. **A** selects the prime p = 2357 and a generator g = 2 of $Z_{2357}^* = \{1, 2, 3, \dots, 2356\}$

A selects the prime p = 2357 and a generator g = 2 of $2_{2357} = \{7_{1}2_{1}5_{1}, ..., 2356\}$ A chooses the private key PrK = x = 1751 and computes public key PuK = a = g^x mod p = 2¹⁷⁵⁷ mod 2357 = 1185. System parameters are SP = (p = 2357, g = 2) A's public key is PuK = (a = 1185) and private key PrK = (x = 1751).

Signature generation.

For simplicity, let messages will be integers from $Z_P^* = \{1, 2, ..., p-1\}, m \neq 0$. And for this example only, take H to be the identity function, i.e. H(m) = m. Let message m = 1463.

A selects a <u>random</u> integer **k** = **1529**, computes **r** = **g**^k **mod p** = = **2**¹⁵²⁹ **mod 2357** = **1490**. $\vec{k}^{1} = \frac{1}{k} = \frac{1}{1529} = \dots$

To compute k⁻¹ mod (p - 1), A uses Extended Euclidean algorithm:

Let gcd(k, p - 1) = d, then there exist such u, v that

$$(u + (p-1)) \cdot v = d = gcd(k, p - 1) = 1 = d$$

d112 = T 742 -T22 //vermcation >> 1529*245+(2357-1)*(-159) ans = 1

Then k^{-1} mod (p - 1) = 245. //verification k·k⁻¹ mod (p - 1) = 1529·245 mod (2357-1) = 1

>> mod(1529*245,2357-1) ans = 1

Finally, **A** computes H(m) = m = 1463s=(h-xr)k⁻¹ mod (p-1) = (1463-1751·1490)·245 mod (2357-1) = 1777 >> mod((1463-1751*1490)*245,(2357-1)) ans = 1777

A's signature S for m = 1463 is the pair S = (r = 1490; s = 1777).

$$f: m, s = (r, s) \longrightarrow B$$

Signature verification.

B computes using $Puk = (\alpha = 1185)$ SP = (p = 23S7, g = 2)V1 = a^rr^s mod p = 1185 ¹⁴⁹⁰ · 1490 ¹⁷⁷⁷ mod 2357 = 387 · 557 mod 2357 = 1072. >> mod_exp(1185,1490,2357) ans = 387 >> mod exp(1490,1777,2357) ans = 557>> mod(387*557,2357) ans = 1072

H(m) = m = 1463 = h V2 = g^h mod p = 2¹⁴⁶³ mod 2357 = 1072. >> mod_exp(2,1463,2357) ans = 1072

B accepts the signature since V1 = V2.

Thi dia

----- Iki čia -----

Homomorphic property

11.5.4 The ElGamal signature scheme with message recovery [Menezes]

The ElGamal scheme and its variants (x11.5.2) discussed so far are all randomized digital signature schemes with appendix (i.e., the message is required as input to the verification algorithm). In contrast, the signature mechanismof Algorithm11.81 has the feature that the message can be recovered from the signature itself. Hence, this ElGamal variant provides a randomized digital signature with message recovery.

For this scheme, the signing space is $M_s = Z_p^*$, **p** a prime, and the signature space is $S = Z_P \times Z_q$, **q** a prime, where **q** divides (**p** - 1). Let **R** be a redundancy function from the set of messages **M** to M_s (see Table 11.1). Key generation for Algorithm 11.81 is the same as DSA key generation (Algorithm 11.54), except that there are no constraints on the sizes of **p** and **q**.

Digital signature	igital signatures with message recovery		Digital signatures with message recovery		
The redundancy function			A good redundancy function		
 R and R⁻¹ are publicly 	R and R ⁻¹ are publicly known Selecting an appropriate R is <i>critical</i> to the security of the system A bad redundancy function		• Example • $M = \{m : m \in \{0, 1\}^n\}, M_S = \{m : m \in \{0, 1\}^{2n}\}$ • $R : M \to M_S, R(m) = m m$ • $M_R \subset M_S$		
Selecting an appropri					
A bad redundancy fun					
 Let us suppose that M_R ≡ M_S R and S_A are bijections, therefore M and S have the same number of elements Therefore, for all s ∈ S, V_A(s) ∈ M_R. Therefore, it is "easy" to find an m for which s is the signature, m = R⁻¹(V_A(s)) s is a valid signature for m (<i>existential forgery</i>) 		rof			
		• When n is large, $ M_R / M_S = (1/2)^n$ is small. Therefore, for an adversary it is unlikely to choose an s that yields $V_A(s) \in M_R$			
					ISO/IEC 9776 is an international standard that defines a redundancy function for RSA and Rabin
		Network Security	© Gianluca Dini	12	Network Security
ecover the m Signature g	nessage m from the signeration. Entity A sho	nature. ould do	the following	an verify A's signature and :	מ
ecover the m 1. Signature g a) Compute e R(m). b) Select a ra	nessage m from the signed generation. Entity A sho em Indom secret integer k,	nature. ould do	the following $q-1$, and cor	an verify A's signature and : npute r =	3
ecover the m 1. Signature g (a) Compute e = R(m). (b) Select a ra –k mod p.	nessage m from the signed generation. Entity A sho em Indom secret integer k,	nature. puld do	the following $q-1$, and cor	an verify A's signature and : npute r =	
ecover the m 1. Signature g (a) Compute e = R(m). (b) Select a ra -k mod p. (c) Compute e	nessage m from the sign eneration. Entity A sho em Indom secret integer k, e = emr mod p.	nature. puld do	the following $q-1$, and cor	an verify A's signature and : mpute r =	
recover the m L. Signature g a) Compute e = R(m). b) Select a ra –k mod p. c) Compute e d) Compute s	nessage m from the sign generation. Entity A sho em Indom secret integer k, e = emr mod p. s = ae + k mod q.	nature. puld do	Any entity B c the following q—1, and cor	an verify A's signature and : npute r =	3
ecover the m L. Signature g a) Compute e R(m). b) Select a ra –k mod p. c) Compute e d) Compute s e) A's signatu	nessage m from the sign generation. Entity A sho em andom secret integer k, e = emr mod p. s = ae + k mod q. ure for m is the pair (e;	nature. puld do 1 k s).	Any entity B c the following q—1, and cor	an verify A's signature and : npute r =	2
ecover the m 1. Signature g (a) Compute e = R(m). (b) Select a ra -k mod p. (c) Compute e (d) Compute s (e) A's signatu 2. Verification	nessage m from the sign eneration. Entity A sho em ndom secret integer k, e = emr mod p. s = ae + k mod q. ure for m is the pair (e; n. To verify A's signatur	nature. puld do 1 k s). e (e; s)	Any entity B c the following q—1, and cor on m, B shoul	an verify A's signature and : mpute r = d do the following:	3
ecover the m 1. Signature g (a) Compute e = R(m). (b) Select a ra -k mod p. (c) Compute e (d) Compute s (e) A's signatu 2. Verification (a) Obtain A's	nessage m from the sign eneration. Entity A sho em andom secret integer k, e = emr mod p. s = ae + k mod q. ure for m is the pair (e; n. To verify A's signatur authentic public key (p	s). e (e; s)	Any entity B c the following q—1, and cor on m, B shoul	an verify A's signature and : mpute r = d do the following:	
ecover the m 1. Signature g (a) Compute e = R(m). (b) Select a ra -k mod p. (c) Compute e (d) Compute e (e) A's signatu 2. Verification (a) Obtain A's y).	nessage m from the sign generation. Entity A sho em andom secret integer k, e = emr mod p. s = ae + k mod q. ure for m is the pair (e; n. To verify A's signatur authentic public key (p	s). e (e; s)	Any entity B c the following q-1, and cor on m, B shoul	an verify A's signature and : mpute r = d do the following:	
recover the m 1. Signature g (a) Compute e = R(m). (b) Select a ra -k mod p. (c) Compute e (d) Compute e (d) Compute s (e) A's signatu 2. Verification (a) Obtain A's y). (b) Verify that	nessage m from the sign generation. Entity A sho em andom secret integer k, e = emr mod p. s = ae + k mod q. ure for m is the pair (e; n. To verify A's signatur authentic public key (p t 0 < e < p; if not, reject	s). e (e; s) ; q;	Any entity B c the following q-1, and cor on m, B shoul gnature.	an verify A's signature and : mpute r =	
ecover the m 1. Signature g (a) Compute e = R(m). (b) Select a ra -k mod p. (c) Compute e (d) Compute e (d) Compute s (e) A's signatu 2. Verification (a) Obtain A's (b) Verify that (c) Verify that	The second provide the signature of the signature of the signature of the second provide the second provides and the second provide	nature. puld do 1 k s). e (e; s) p; q; the sig the sig	Any entity B c the following q—1, and cor on m, B shoul gnature. nature.	an verify A's signature and : mpute r =	
ecover the m 1. Signature g (a) Compute e = R(m). (b) Select a ra -k mod p. (c) Compute e (d) Compute s (e) A's signatu 2. Verification (a) Obtain A's y). (b) Verify that (c) Verify that (d) Compute y	the state of the signature of the secret integer k, $e = emr \mod p$. $s = ae + k \mod q$. are for m is the pair (e; n). To verify A's signature of the signature of the secret of the secr	s). e (e; s) c; q; the sig	Any entity B c the following q—1, and cor on m, B shoul gnature. nature.	an verify A's signature and : mpute r =	
ecover the m 1. Signature g (a) Compute e = R(m). (b) Select a ra -k mod p. (c) Compute e (d) Compute e (e) A's signatu 2. Verification (a) Obtain A's y). (b) Verify that (c) Verify that (c) Compute e (c) Compute e (c) Compute e (c) Compute e (c) Compute e (c) Compute e	nessage m from the sign generation. Entity A sho em andom secret integer k, $e = emr \mod p$. $s = ae + k \mod q$. ure for m is the pair (e; n . To verify A's signatur authentic public key (p t 0 < e < p; if not, reject t 0 < s < q; if not, reject v = and em	nature. ould do 1 k s). e (e; s) o; q; the sig the sig	Any entity B c the following q—1, and cor on m, B shoul gnature. nature.	an verify A's signature and : mpute r =	
ecover the m 1. Signature g (a) Compute (= R(m). (b) Select a ra -k mod p. (c) Compute ((d) Compute ((e) A's signatu 2. Verification (a) Obtain A's (b) Verify that (c) Verify tha	nessage m from the sign generation. Entity A sho em andom secret integer k, e = emr mod p. s = ae + k mod q. ure for m is the pair (e; n. To verify A's signatur authentic public key (p t 0 < e < p; if not, reject t 0 < e < p; if not, reject t 0 = a < p; if not, reject t 0 = a < p; if not, reject t 0 = a < p; if not, reject	s). c (e; s) c; q; the sig	Any entity B c the following q—1, and cor on m, B shoul gnature. nature.	an verify A's signature and : mpute r =	
ecover the m 1. Signature g (a) Compute e = R(m). (b) Select a ra -k mod p. (c) Compute e (d) Compute e (e) A's signatu 2. Verification (a) Obtain A's (b) Verify that (c) Verify tha	nessage m from the sign eneration. Entity A sho em andom secret integer k, e = emr mod p. s = ae + k mod q. ure for m is the pair (e; n. To verify A's signatur authentic public key (p t 0 < e < p; if not, reject t 0 < e < q; if not, reject t 0 = and em	nature. puld do 1 k s). e (e; s) p; q; the sig	Any entity B c the following q—1, and cor on m, B shoul gnature. nature.	an verify A's signature and : mpute r =	

62MR then reject the signature.

(f) Recover m = R—1(em

).

Proof that signature verification works. If A created the signature, then v sy—e

s—ae

k (mod p). Thus ve
k em
–k em
(mod p), as required.
11.92 Evenue (Nuberg Duennel signature generation with artificially small perspectare)
11.82 Example (Nyberg-Ruepper signature generation with artificially small parameters)
Key generation. Entity A selects primes p = 1256993 and q = 3571, where q
divides
(p-1); here, $(p-1)=q=352$. A then selects a random number $g=42077.2$ Z
n and
computes
$- 12077352 \mod n - 111238$ Since
$-42077552 \mod p - 441250.5 \mod c$
U- 1,
schereure of order 2571 in 7
subgroup of order 3571 in 2
p. Finally, A selects a random integer a = 2774 and computes
γ =
a mod p = 1013657. A's public key is (p = 1256993; q = 3571;
= 441238; y =
1013657), while A's private key is a = 2774.
Signature generation. To sign amessagem, Acomputes em
= R(m) = 1147892 (the value
R(m) has been contrived for this example). A then randomly selects k = 1001,
computes
r =
$-k \mod p = 441238 - 1001 \mod p = 1188935$, $e = e \mod p = 138207$, and $s = 138207$.
$(2774)(138207) + 1001 \mod \alpha = 1088$ The signature for m is (e = 138207) s =
1088)
Signature verification B computes v = 1/17381088 1013657_128207 mod
Signature vernication. B computes v = 4412361066 - 1013037 = 136207 mou
1230935 -
204306, dilu elli
= V 138207 mod 1256993 = 1147892. B Verifies that em
2 Mik and
recovers m = R-1(em
).