
El-Gamal Encryption: example with Octave

>> genstrongprime(28)
ans = 15412127
>> p=ans
p = 15412127
>> q=(p-1)/2
q = 7706063
>> isprime(q)
ans = 1

>> g=3
g = 3
>> mod_exp(g,2,p)
ans = 9

>> mod_exp(g,q,p)
ans = 1

>> g=17

>> x=randi(p-1)
x = 3121242
>> a=mod_exp(g,x,p)
a = 13704847

>> m=123456
m = 123456
>> r=randi(p-1)
r = 3716363
>> e1=mod_exp(a,r,p)
e1 = 6027330
>> e=mod(m*e1,p)
e = 12560920
>> d=mod_exp(g,r,p)
d = 7241872

Topics of Course Works you will find in
http://crypto.fmf.ktu.lt/xdownload/

You must choose suitable topic of Course Work by labeling it in Google drive
https://drive.google.com/file/d/1qjFw1OJnPcwa3CFvg-Of1xt_B9RXXAqq/view?usp=sharing

 Open v „Google“ documents

Midterm exam should be from 8 to 16 week: suggest 11-th week, 12-th of November.
It will be arranged during the lecture 17:30-18:00.

https://imimsociety.net/en/14-cryptography
Problems required to solve:
DH-KAP, MiM Attack, RSA signature, RSA encryption
https://imimsociety.net
http://crypto.fmf.ktu.lt/xdownload/

p = 264043379 Check that p is strong prime
g=2

006_KS ElGamal-Sig

 006_KS ElGamal-Sig Page 1

http://crypto.fmf.ktu.lt/xdownload/
https://drive.google.com/file/d/1qjFw1OJnPcwa3CFvg-Of1xt_B9RXXAqq/view?usp=sharing
https://imimsociety.net/en/14-cryptography
https://imimsociety.net
http://crypto.fmf.ktu.lt/xdownload/

The ElGamal signature scheme is a digital signature scheme which is based on the difficulty
of computing discrete logarithms. It was described by Taher ElGamal in 1984.[1]

The ElGamal signature algorithm is rarely used in practice. A variant developed at NSA and
known as the Digital Signature Algorithm is much more widely used. There are several other
variants.[2] The ElGamal signature scheme must not be confused with ElGamal
encryption which was also invented by Taher ElGamal.

El-Gamal E-Signature

>> g=17
g = 17
>> mod_exp(g,q,p)
ans = 15412126

>> demx=mod_exp(d,p-1-x,p)
demx = 4633989
>> m1=mod(e*demx,p)
m1 = 123456

 006_KS ElGamal-Sig Page 2

https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Discrete_logarithm
https://en.wikipedia.org/wiki/Taher_ElGamal
https://en.wikipedia.org/wiki/ElGamal_signature_scheme#cite_note-ElgamalOriginalArticle-1
https://en.wikipedia.org/wiki/NSA
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/ElGamal_signature_scheme#cite_note-2
https://en.wikipedia.org/wiki/ElGamal_encryption
https://en.wikipedia.org/wiki/ElGamal_encryption

encryption which was also invented by Taher ElGamal.
The ElGamal signature scheme allows a third-party to confirm the authenticity of a message
sent over an insecure channel.
From <https://en.wikipedia.org/wiki/ElGamal_signature_scheme>

1.System parameters (PP)
Let H be a collision-resistant hash function.•
Let p be a large prime such that computing discrete logarithms modulo p is
difficult.

•

Let g < p be a randomly chosen generator of the multiplicative group of integers
modulo p Zp

*= {1, 2, …, p-1} ={gi | i=0, 1, 2,…, p-2}. //Fermat theorem
•

These System Parameters (SP) must be shared between users.
SP = (p, g)

2.Key generation

Randomly choose a private key x with 1 < x < p − 1.•

Compute a = g x mod p.
 006_KS ElGamal-Sig Page 3

https://en.wikipedia.org/wiki/NSA
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/ElGamal_signature_scheme#cite_note-2
https://en.wikipedia.org/wiki/ElGamal_encryption
https://en.wikipedia.org/wiki/ElGamal_encryption
https://en.wikipedia.org/wiki/ElGamal_signature_scheme
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Prime_number
https://en.wikipedia.org/wiki/Discrete_logarithm
https://en.wikipedia.org/wiki/Modular_arithmetic
https://en.wikipedia.org/wiki/Generating_set_of_a_group
https://en.wikipedia.org/wiki/Multiplicative_group_of_integers_modulo_n
https://en.wikipedia.org/wiki/Multiplicative_group_of_integers_modulo_n

Compute a = g x mod p.•

The public key is PuK = a.•

The private key is PrK = x.•

These steps are performed once by the signer.

Digital signature

3.Signature generation
To sign a message M the signer performs the following steps.

Compute h=H(M).•

Choose a random k such that 1 < k < p − 1 and gcd(k, p − 1) = 1.•
k-1 mod (p-1) exists if gcd(k, p − 1) = 1, i.e. k and p-1 are relatively prime
k-1 can be found using either Extended Euclidean algorithmt or Euler theorem

>> kem1=mulinv(k,p-1) % k-1mod (p-1) computation

Compute t=gk mod p•

Compute s=(h-x*t)*k-1 mod (p-1) --> h=x*t+s*k mod (p-1),•

Signature Sigma=(s,t)

If s=0, start over again.•

Then the pair (s,t) is the digital signature of h.
The signer repeats these steps for every signature.

4.Verification

 006_KS ElGamal-Sig Page 4

https://en.wikipedia.org/wiki/Greatest_common_divisor
https://en.wikipedia.org/wiki/Greatest_common_divisor

4.Verification

A signature (s,t) on messageh is verified as follows.

1. 1<s<p-1 and 1<t<p-1.
2. V1=atts mod p, V2=gh mod p and V1=V2.
The verifier accepts a signature if all conditions are satisfied and rejects it otherwise.

5.Correctness
The algorithm is correct in the sense that a signature generated with the signing algorithm
will always be accepted by the verifier.
The signature generation implies

h=xt+sk mod (p-1)
Hence Fermat's little theorem implies that all operations in the exponent are computed
mod (p-1)

gh=g(xt+ks) mod (p-1)mod p = gxtgks = (gx)t(gk)s = atts mod p

 006_KS ElGamal-Sig Page 5

https://en.wikipedia.org/wiki/Fermat%27s_little_theorem

11.65 Example: ElGamal signature generation with artificially small parameters
Key generation.
A selects the prime p = 2357 and a generator g = 2 of Z*

2357.
A chooses the private key PrK = x = 1751
and computes public key PuK = a = gx mod p = 2 1757 mod 2357 = 1185.
System parameters are SP = (p = 2357, g = 2)
A's public key is PuK = (a = 1185) and private key PrK = (x = 1751).

Signature generation.
For simplicity, let messages will be integers from ZP

* = {1, 2, …, p-1}, m ≠ 0.
And for this example only, take H to be the identity function, i.e. H(m) = m.
Let message m = 1463.
A selects a random integer k = 1529,
computes r = gk mod p = = 21529 mod 2357 = 1490.

To compute k-1 mod (p - 1), A uses Extended Euclidean algorithm:

k∙u + (p-1)∙v = d = gcd(k, p − 1) = 1 = d
Let gcd(k, p − 1) = d, then there exist such u, v that

>>eeuklid(k, p-1)
ans = gcd(k,p-1) = d u v
>>eeuklid(1529, 2357-1)
Ans = 1 245 -159

>> eeuklid(1529,2357-1)
ans = 1 245 -159 //verification
>> 1529*245+(2357-1)*(-159)
ans = 1

 006_KS ElGamal-Sig Page 6

https://en.wikipedia.org/wiki/Greatest_common_divisor
https://en.wikipedia.org/wiki/Greatest_common_divisor

Homomorphic property

ans = 1 245 -159 //verification
>> 1529*245+(2357-1)*(-159)
ans = 1

Then k-1 mod (p - 1) = 245. //verification
k∙k-1 mod (p - 1) = 1529∙245 mod (2357-1) = 1

>> mod(1529*245,2357-1)
ans = 1

Finally, A computes H(m) = m = 1463
s=(h-xr)k-1 mod (p-1) = (1463-1751∙1490)∙245 mod (2357-1) = 1777
>> mod((1463-1751*1490)*245,(2357-1))
ans = 1777

A’s signature S for m = 1463 is the pair S = (r = 1490; s = 1777).

Signature verification.
B computes using
V1 = arrs mod p = 1185 1490 ∙ 1490 1777 mod 2357 = 387∙557 mod 2357 = 1072.
>> mod_exp(1185,1490,2357)
ans = 387
>> mod_exp(1490,1777,2357)
ans = 557
>> mod(387*557,2357)
ans = 1072

H(m) = m = 1463 = h
V2 = gh mod p = 21463 mod 2357 = 1072.
>> mod_exp(2,1463,2357)
ans = 1072

B accepts the signature since V1 = V2.

--- Iki čia ---

 006_KS ElGamal-Sig Page 7

11.5.4 The ElGamal signature scheme with message recovery [Menezes]

The ElGamal scheme and its variants (x11.5.2) discussed so far are all randomized
digital signature schemes with appendix (i.e., the message is required as input to
the verification algorithm). In contrast, the signature mechanismof Algorithm11.81
has the feature that the message can be recovered from the signature itself.
Hence, this ElGamal variant provides a randomized digital signature with message
recovery.

For this scheme, the signing space is Ms = Zp
*, p a prime, and the signature space is

S = ZP x Zq, q a prime, where q divides (p − 1). Let R be a redundancy function from
the set of messages M to Ms (see Table 11.1). Key generation for Algorithm 11.81 is
the same as DSA key generation (Algorithm 11.54), except that there are no
constraints on the sizes of p and q.

 006_KS ElGamal-Sig Page 8

11.81 Algorithm Nyberg-Rueppel signature generation and verification

SUMMARY: entity A signs a messagem2M. Any entity B can verify A’s signature and
recover the message m from the signature.
1. Signature generation. Entity A should do the following:
(a) Compute em
= R(m).
(b) Select a random secret integer k, 1 � k � q−1, and compute r =
−k mod p.
(c) Compute e = emr mod p.
(d) Compute s = ae + k mod q.
(e) A’s signature for m is the pair (e; s).
2. Verification. To verify A’s signature (e; s) on m, B should do the following:
(a) Obtain A’s authentic public key (p; q;
; y).
(b) Verify that 0 < e < p; if not, reject the signature.
(c) Verify that 0 � s < q; if not, reject the signature.
(d) Compute v =
sy−e mod p and em
= ve mod p.
(e) Verify that em
2MR; if em
62MR then reject the signature.
(f) Recover m = R−1(em
).
Proof that signature verification works. If A created the signature, then v �
sy−e �

s−ae �
k (mod p). Thus ve �

 006_KS ElGamal-Sig Page 9

k (mod p). Thus ve �
k em
−k � em
(mod p), as required.

11.82 Example (Nyberg-Rueppel signature generation with artificially small parameters)

Key generation. Entity A selects primes p = 1256993 and q = 3571, where q
divides
(p − 1); here, (p − 1)=q = 352. A then selects a random number g = 42077 2 Z�
p and
computes
= 42077352 mod p = 441238. Since
6= 1,
generates the unique cyclic
subgroup of order 3571 in Z�
p. Finally, A selects a random integer a = 2774 and computes
y =
a mod p = 1013657. A’s public key is (p = 1256993; q = 3571;
= 441238; y =
1013657), while A’s private key is a = 2774.
Signature generation. To sign amessagem,Acomputes em
= R(m) = 1147892 (the value
R(m) has been contrived for this example). A then randomly selects k = 1001,
computes
r =
−k mod p = 441238−1001 mod p = 1188935, e = e mr mod p = 138207, and s =
(2774)(138207)+ 1001 mod q = 1088. The signature for m is (e = 138207; s =
1088).
Signature verification. B computes v = 4412381088 � 1013657−138207 mod
1256993 =
504308, and em
= v � 138207 mod 1256993 = 1147892. B verifies that em
2 MR and
recovers m = R−1(em
).

 006_KS ElGamal-Sig Page 10

